
1 wue.co.nz

Understanding your delivery system

Auckland Software Leaders Group
Jan 2024

 myles-henaghan

Free to share

Our contribution to
raising the standard of software delivery in New Zealand

Hierarchy of Engineering Needs © 2022 by Myles Henaghan, Wires Uncrossed is licensed under CC BY-NC-ND 4.0

Goals / Metrics People

Processes Infrastructure

TechnologyCulture

01 Continuous Delivery

Metrics &
Benchmarks

Throughput
Quality

Reliability

Software Delivery
Performance

Source: dora.dev/research, wue.co.nz/model

9 years
12 industries

36,000 professionals

Organisational
Performance

2x more likely to
exceed their goals

Quality of services provided
Number of customers
Customer satisfaction
Quantity of products
Operating efficiency

Market share
Productivity
Profitability

PredictsMeasured by

Basic Needs

Managed Work

Effective Ownership

Sustainability

Flow

Li
m

it
s

01 Continuous Delivery

Hierarchy of Engineering Needs©

Basic Needs
Ability to build an application and deploy changes to it

Managed Work
Repeatable work, managed quality of changes

Effective Ownership
Operating long-term services, codified architecture and

standards

Sustainability
Adaptive team and systems

Flow
Productive flow of value, high customer trust,

team mastery

Hierarchy of Engineering Needs © 2022 by Myles Henaghan, Wires Uncrossed is licensed under CC BY-NC-ND 4.0

Positive Maturity Cycle

wue.co.nzwue.co.nz

Customer
Satisfaction

Job Satisfaction

creates space for leads to

rewards

increases

builds a culture of

Working
Productively

Improving
Reliability

02 The Model

Engineering needs©
Wires Uncrossed Engineering Needs
 v7, Sept 2023

Production
EnvData &

Storage

Environment
Mgt.

Local Dev +
IDE

Gateways &
CDN

Permissions
& Identity

Operating
Rhythms

ObservabilityPeople &
Purpose

Version
Control

Work
Backlog

Compute

Cloud
Accounts & IO

Quality
Engineering

Artifact Mgt.

Standards
Compliance

Deployment
Solutions

Alerting

Security
Controls

Information
Mgt.

Infrastructure
as code

Delivery
Metrics

On-Call

APIs & SDKs

Incident
Mgt.

Static
Analysis

Templates,
Golden Paths

Cont.
Integration Compliance

as code

SLIs, SLOs

Eventing

Cont.
Deployment

Product
Metrics

Experimentation

Career
Growth

Governance
 & DR

Hypothesis
Driven Chaos/

Game Days

Value & Trust

Basic Needs

Managed Work

Effective Ownership

Sustainability

Flow

R
es

p
on

si
b

ili
ty

Team

Platform & Partners

Tech.
Capability

Hierarchy of Engineering Needs © 2022 by Myles Henaghan, Wires Uncrossed is licensed under CC BY-NC-ND 4.0

Engineering needs©
1. Basic Needs

What does any team, regardless of age and stage, need to build an application and
deploy changes to it?

Production
EnvData &

Storage

Environment
Mgt.

Local Dev +
IDE

Gateways &
CDN

Permissions
& Identity

Operating
Rhythms

ObservabilityPeople &
Purpose

Version
Control

Work
Backlog

Compute

Cloud
Accounts & IO

Tech.
Capability

Example: Environment Management

I can easily test and debug changes in a prod-like environment.
An environment for my change.

Engineering needs©
2. Managed Work

What does the team need to make work repeatable and have controls to verify the
quality and efficiency of new work?

Quality
Engineering

Artifact Mgt.

Standards
Compliance Deployment

Solutions

Alerting

Security
Controls

Information
Mgt.

Infrastructur
e as code Delivery

Metrics

On-Call

Example: Information Management

Team and service level Information is easy to self-discover and is trusted.
Auditing compliance and runtime dependencies is routine and self-service

Engineering needs©
3. Effective Ownership

What does the team need to effectively own and operate services already in
production, regardless of new development work on those services?

APIs & SDKs

Incident
Mgt.

Static
Analysis

Templates,
Golden Paths

Cont.
Integration Compliance

as code

SLIs, SLOs
Eventing

Example:Templates, Accelerators/Golden Paths

We can consistently create new projects and deploy a 'hello world' version to
production in under [3] hours.
Templated projects, builds, and IaC complies fully with our engineering standards.

Engineering needs©
4. Sustainability

What does the team need to grow and mature on a yearly level?

Cont.
Deployment

Product
Metrics

Experimentation

Career
Growth

Example: Experimentation

The team can run multiple experiments in parallel.
Significant system changes can be safely tested in production.

Engineering needs©
5. Flow

Maturity here is marked by being able to work productively over long periods while
maintaining, if not increasing, customer and shareholder trust.

Governance
 & DR

Hypothesis
Driven Chaos/

Game Days

Value & Trust

Example: Governance

Annual audits do not interrupt the team's regular work.
We proactively test our disaster recovery procedures.
It is easy to find service-level information on security, cost and privacy status.

29 wue.co.nz

Appendix

Need Name Definition / The Ability to...

Production
Environments

Trusted combined state of configuration, deployed artifact(s), infrastructure, runtimes, dependencies and access
control.
The Prod ENV ensures a seamless user experience and customer satisfaction by providing a reliable software deployment
platform.
It is optimized & managed for high performance, scalability, and availability.
The team can quickly access production log files and data to assist with troubleshooting issues.

Environment
Management

Ability to test and debug changes in a prod-like environment. Infrastructure-as-code, data sets/data generation,
dependency management & configuration, Mocks, data generation, short-lived environments. Real dependencies,
similar/same technically to production. Composable environments. Setting up and managing different environments for
my project is efficient and cheap. An environment for my change.

Observability

The ability to debug, troubleshoot and monitor normal and abnormal system behaviour. Curated patterns and tooling
for the collection, storage, querying and aggregation of system data. It provides comprehensive visibility into the system's
health, performance, and logs, allowing for timely detection and resolution of issues. An opinionated operational health
dashboard.

Technical
capability

Most people can pick up most work on the team. The team's technical capabilities align well with the requirements of
the project. Team members can complete daily activities confidently.
They have a solid understanding of the technologies, frameworks, and tools that are utilised, allowing them to design and
develop robust solutions efficiently. They regularly pair-program to help with productivity and building experience.

BASIC NEEDS

Need Name Definition / The Ability to...

Operating
Rhythms

The routines used by the team to manage delivery and operations. Planning on a daily, weekly and quarterly basis.
Familiar and effective ceremonies. Open communication channels enable timely updates, issue resolution, and
knowledge sharing, promoting a cohesive team dynamic and ensuring everyone works towards a common purpose.
Regular team meetings, stand-ups, and planning sessions foster a shared understanding of priorities and facilitate the
coordination of tasks. Achievements are celebrated, learnings are sought, and the team is empowered to balance
capacity investment across new feature delivery, maintaining quality of service and improving efficiencies. There is
Organisation level visibility on past and planned investments across new feature delivery, maintaining quality of service
and improving productivity.

People & Purpose

Enough team members to meet the ownership and delivery expectations on them.
I feel connected to the purpose and goals of the project I am working on. The project's vision and objectives are clearly
communicated, creating a sense of shared purpose and motivation among team members.

Compute

The allocated computational resources sufficiently meet the demands of my project, ensuring optimal performance and
scalability without hindering productivity.
Self-service compute solutions available for the teams across VMs, containers, FaaS and edge workloads with
opinionated sensible defaults. Clear options to support minimum capacity, elastic scaling, burst scaling and serverless.
Guidance and defaults in place for performance, reliability and availability of compute platforms.
Compute fleets are kept young and disposable theough routine fleet management. Running instances, configured
containers younger than two weeks to improve patching compliance and avoid stateful dependancy
Proactive management of minimum OS and runtime versions to avoid running non supported versions or dependancies
in production.

BASIC NEEDS

Need Name Definition / The Ability to...

Data

Opinionated self-service data solutions are available for the teams across SQL, NoSQL, Blob/Bucket and Caching.
Guidance and defaults are in place for performance, reliability, and data durability. The mean-time-to-restore is known
for its primary services. Sharding or partitioning policies support the scale and regional context of the services. The team
can independently manage Data migrations and schema changes. There is up-to-date documentation of schemas and
associated privacy or security classifications.

Work Backlog

The work backlog for my project is well-organized and prioritized. It reflects a clear understanding of project requirements
and aligns with strategic goals. The backlog items are appropriately sized, ensuring efficient planning and task allocation.
Prioritization reflects a balance of business, value, customer value, team productivity and service performance.
With a well-maintained backlog, the project team can effectively plan, estimate, and track progress, ensuring a steady
flow of value delivery.

Code Version
Control

New repositories, teams and projects and permissions are created in a consistent way.
Clear guidance on branching strategies implemented at organisation level. Easy to track changes, support concurrent
development and rollback changes.
Clear association between repository, team and any deployed assets and overall project status.
There is guidance and examples on creation of repositories for internal only, internal + trusted partners, and open source
use cases.
The removal of permissions for ex employees and contractors is automated

BASIC NEEDS

Need Name Definition / The Ability to...

Cloud Accounts &
IO

Teams can create new cloud accounts to provision infrastructure and services related to a common domain. Fast
automated creation and deletion of cloud accounts with consistent and compliant Identity and Access Management
inherited from a centralised control pane. Accounts created with consistent virtual networks for deployed assets and
across accounts

Local Dev + IDE

Provides a smooth and productive coding experience, with the necessary tools, libraries, frameworks and associated
licenses are readily available.
Highly automated opinionated setup process gives developers a consistent baseline setup to support build, test and run
activities for the primary services they work on.
Service-specific local setup (e.g. install dependencies, mocks, test data). Related to environment management.
IDE is setup consistent for new team members. Agreed coding conventions are codified in 'dot files' at machine or
repository level.

Gateways & Web
Delivery

The api gateways and web delivery mechanisms (e.g. CDNs) employed in my project ensure efficient and reliable
communication between various services for internal and external traffic.
These gateways provide a unified entry point, handle routing and load balancing, and ensure secure and optimized data
transmission. With robust web delivery mechanisms, the project team can achieve high availability, scalability, and fault
tolerance, delivering a seamless user experience and enabling effective integration with external systems.
Examples: API GW, Azure API Management, Cloudflare, Fastly, Akamai, Cloudfront, Kong, NGINX

Identity &
Permissions

The ability to create and manage accounts, credentials, roles and permissions for end users of the product or service the
team is responsible for. Support for social logins, single sign-on, account verification and suspension. Multi-factor
authentication flows.
The ability to script user generation or resets to help with integration test automation.

BASIC NEEDS

Need Name Definition / The Ability to...

Quality
Engineering

The tools and practices teams use to validate changes early and throughout the development lifecycle continuously. The
management of quality ensures controls are trusted and highly automated. It is familiar and routine to maintain unit,
contract and integration testing. Core workflows for each service are continually tested in production.

On-call

The on-call process is well-structured and familiar to all team members. The appropriate people are available and
contacted promptly to respond to alerts or incidents. Escalation paths are known and used. Expectations with responders
are clear and respected for out-of-hours and holiday periods. Handovers are acknowledged and include a debrief on any
closed or ongoing incidents.

Standards
Compliance

The combined organisation obligations (e.g. audit, regulations) and agreed best practices are documented, transparent
and respected by teams. There is a process to propose and accept changes to established standards. The level of
compliance with standards is visible across the organisation.

Artifact
Management

There is a standard solution for hosting, managing and distributing binaries and artefacts across the organization.
Artefacts include versioned binaries, library feeds (e.g. npm, NuGet, Maven), container images and non-sensitive
configuration files. The solution supports high availability and durability. The team publishes logs and test artefacts
according to their audit requirements.

Alerting
The team has implemented an intelligent alerting mechanism that monitors key metrics in agreed thresholds across
request rates, errors and latency. Scheduled tests regularly check the primary service flows or user actions for availability.
When detecting abnormal system behaviour, the team is alerted before the customer or stakeholder reports an issue.

MANAGED WORK

Need Name Definition / The Ability to...

Deployment
Solutions

For each component type the team supports, there is a standard workflow to build, test, publish artefacts and deploy
new versions. Build pipelines are highly automated, including promoting successful builds across environments. The
deployment solution also orchestrates supporting automation for infrastructure-as-code (IaC), configuration and secrets
management. Central teams publish and maintain common build steps inherited across all builds (e.g., publishing,
tagging, static analysis). Build capacity and speed is high enough to keep wait times under [10] minutes.

Security Controls

Tests and security controls are followed throughout the development lifecycle (design, build and run) to help identify
potential security issues. The security review process does not slow down the development process for the primary systems
the team works on. The team understands their security posture and manages new issues in consultation with experts or a
supporting team.

Infrastructure as
Code

Infrastructure configurations are defined in code, enabling version control, reproducibility, and automated provisioning.
The team manages workload infrastructure creation, configuration, maintenance and deletion through source code
change control. Cloud or data centre portals are used for diagnostics and learning but not for applying changes.

Information
Management

The team maintains a consistent repository of information on component ownership, support routines, team composition
and solution architecture.
The information is accessible across the organization to support efficient onboarding, communication and incident
management across teams.
All deployed infrastructure is identifiable to the component and associated team level.

Delivery Metrics

Key metrics, such as lead time, cycle time, and throughput, are regularly monitored and reviewed. These metrics provide
insights into delivery efficiency, predictability, and capacity to deliver value. The team can identify bottlenecks by analyzing
delivery metrics, optimizing processes, and continuously making data-driven decisions to improve delivery performance.

MANAGED WORK

Need Name Definition / The Ability to...

Templates &
Golden Paths

A comprehensive set of templates and accelerators that expedite development and ensure consistent implementation of
best practices across our common component types.
Component / Project templates implement blueprints in preferred architectures, coding conventions and engineering
standards.
Accelerators combine templates into workflows to scaffold, build, test and deploy new services in hours.

Static Analysis

The team integrates static analysis tools that effectively identify code issues, potential vulnerabilities, and maintain code
quality standards. These tools automatically analyze code, check for common programming errors, and enforce coding
conventions. Tools run locally and as part of automated builds to detect and resolve new issues as early as possible. Data on
software composition & supply chain is available centrally to manage licensing and security vulnerability risk

Continuous
Integration

All code changes are continually merged to the main branch (trunk/master) several times a day. Test-driven
development (TDD) and behavior-driven development (BDD) practices are diligently followed by all team members. TDD
ensures that tests are written before the code, promoting a thorough understanding of requirements and facilitating
comprehensive test coverage. BDD focuses on defining system behavior through scenarios and specifications, improving
collaboration between stakeholders and developers.
The team may also practice Trunk-based development (TBD) or non-blocking pull requests where Engineers work on a
single branch as much as possible to encourage continuous integration. Pushing changes directly to trunk or main is
made safe with mature TDD and quality engineering practices.

Eventing

The ability to coordinate functionality across distributed systems and services using events. Standard patterns, SDKs and
tooling to publish, store, subscribe and consume events across APIs, workers, Web and mobile clients. Schema validation is
in place to block foreign or malformed events.

EFFECTIVE OWNERSHIP

Need Name Definition / The Ability to...

SLO/SLIs

There are clear service level objectives (SLOs) and service level indicators (SLIs) that help measure performance, ensuring
the product consistently meets the defined quality and reliability standards. These SLOs and SLIs define synthetic tests of
primary workflows and key metrics, such as response time, availability, and error rates, enabling the team to monitor and
continuously improve the product's performance against established benchmarks and commitments made to customers.

Templates &
Golden Paths

A comprehensive set of templates and accelerators that expedite development and ensure consistent implementation of
best practices across our common component types.
Component / Project templates implement blueprints in preferred architectures, coding conventions and engineering
standards.
Accelerators combine templates into workflows to scaffold, build, test and deploy new services in hours.

Compliance as
Code

My team incorporates compliance requirements as code, automating compliance checks and ensuring adherence to
regulatory standards. Compliance rules and checks are codified, allowing for automated enforcement during the
development and deployment process. By treating compliance as code, the team can efficiently implement and maintain
compliance controls, reducing human error, enhancing auditability, and minimizing the time and effort required to
maintain regulatory compliance.

API & SDK(s)

The team provides well-designed APIs and software development kits (SDKs) that facilitate integration and extensibility.
The APIs offer clear documentation, well-defined contracts, and consistent interfaces, enabling seamless interaction with
the product's services and functionalities. The SDKs provide comprehensive tooling, libraries, and code examples,
simplifying the development process for external and internal consumers. Internal publishers support fake or mock
implementations of their APIs to help consuming teams automate testing.

Incident
Management

The incident management process on my product is robust and well-structured, enabling swift response and minimizing
the impact of incidents. The team follows established incident response procedures, including incident identification,
communication, prioritization, and resolution. Clear roles and responsibilities are defined, ensuring effective coordination
and collaboration during incident handling.

EFFECTIVE OWNERSHIP

Need Name Definition / The Ability to...

Career Growth

My product team provides ample opportunities for career growth and professional development. There is a mix of junior
and senior talent on the team. Everyday pairing and coaching on specialised areas avoid key person dependencies. The
team and company encourage continuous learning, supports skill enhancement, and provides access to training resources
and mentorship programs. Regular performance evaluations and constructive feedback help identify areas for
improvement and define career paths.

Product Metrics

The team effectively captures and analyzes product performance metrics, enabling data-driven decision-making and
continuous product improvement. The team can independently form and test a new hypothesis using standard user event
capture, aggregation and visualization tools. User events and flows are well-documented and accessible to all teams. Event
processing filters activity from automated testing.

Experimentation

Team actively promotes a culture of experimentation to support both hypothesis-driven development and technical risk
management. The team conducts controlled experiments, A/B tests, and user research to validate assumptions, gather
feedback, and inform decision-making. The team can run multiple experiments in parallel. Significant system changes can
be safely tested in production.

Continuous
Deployment

Building on continuous Integration, all successfully builds are automatically promoted and deployed to production. The
team is likely practicing Trunk-based development (TBD) or non-blocking pull requests where Engineers work on a single
branch as much as possible to encourage continuous integration. Pushing changes directly to trunk or main is made safe
with mature TDD and quality engineering practices. Changes are implemented with the intention it will be deployed
directly to production. High degree of release controls (e.g. feature flags, experiments) ensure it's safe to deploy partially
implemented features. High maturity of SLO and alerting to detect and revert problem changes.

SUSTAINABILITY

Need Name Definition / The Ability to...

Governance & DR

The team enjoys adequate governance controls and disaster recovery (DR) measures for their services and operations.
Wherever possible, these controls are automated into the Engineering activities. The team proactively tests their DR
procedures (e.g., backup, recovery, replication and failover) to meet their business continuity commitments. Annual audits
do not interrupt the team's regular work.

Hypothesis Driven

My product embraces a hypothesis-driven approach, where experiments and data analysis systematically test and validate
assumptions. The team formulates clear hypotheses, defines success criteria, and designs experiments to gather data and
insights. By continuously testing and refining ideas, the team can make informed decisions, prioritize initiatives, and drive
innovation, creating more customer value.

Chaos / Game
Days

My product team regularly conducts chaos/game days to proactively test and validate the system's resilience and readiness
for unexpected scenarios. During chaos/game days, the team simulates real-world failure scenarios, such as service
outages or network disruptions, to identify vulnerabilities, assess the system's response, and fine-tune incident response
processes. By regularly subjecting the product to controlled chaos, the team can strengthen the system's robustness,
improve incident response capabilities, and enhance overall system reliability.

Value & Trust,
Mastery

Fostering a culture of delivering value and building trust, the team prioritizes customer needs and consistently delivers
reliable outcomes. Simultaneously, they strive for mastery through continuous learning and professional development,
ensuring expertise in their respective fields. This combination drives innovation, collaboration, and excellence, exceeding
customer expectations and maintaining a competitive edge.

FLOW

